Spatial and temporal patterns of rainfall, discharge, waves, and inundation in the Mekong Delta

Zachary D. Tessler¹
Charles J. Vörösmarty¹
Michael Grossberg²
Hannah Aizenman²
Efi Foufoula-Georgiou³
A. Mohammad Ebtehaj⁴

¹CUNY Environmental CrossRoads Initiative, City College of New York
²City College of New York
³University of Minnesota
⁴Georgia Institute of Technology

or...

WHEN IT RAINS,
LAND GETS WET
or...

WHEN RIVERS CREST,

LAND GETS WET

or... (final one!)

WHEN THE OCEAN SURGES,

LAND GETS WET
Drivers of delta surface inundation

- Rain in upstream basin → river network → fluvial flooding
- Local precipitation
- Offshore storms → storm surge → coastal inundation
- Irrigation
- Groundwater extraction
- Water management – dams, other engineering...
Importance of surface inundation data

- Surface water \(\rightarrow\) related to flood risk
 - Soil moisture \(\rightarrow\) ability of water to infiltrate rather than running off
- Surface water also an indicator of flooding itself, though not always
- Indicator of agricultural activity
- Indicative of wetland ecosystem processes, health
- Surface water dynamics also important for tracking long-term change in ecosystems, risk

Questions

- How do precipitation, river discharge, and waves correlate with inundation over the delta?
 - What is the optimal temporal smoothing of higher sampling frequency data to match 10-day inundation data?
- Spatial patterns
 - How do these correlations and timescales vary spatially over the delta?
 - Is distance to coastline or major river branches important?
 - How does this vary by delta?
SSWAMPS Surface Inundation

- **Satellite Surface Water Microwave Product Series**
- Developed at CUNY Environmental CrossRoads Initiative/City College of New York by Kyle McDonald and Ronny Schroeder
- V1: mid 1999 - mid 2009, SSM/I and QuickSCAT
- V2: late 2008 – end of 2012, SSMIS and ASCAT
- Coarse resolution: ~25km pixels (EASE Grid)
- Surface microwave signal is “shadowed” during active rainfall events, but clouds are no problem
- Daily, but very noisy due to variability in radar illumination footprint
 - Using 10-day averages
“Driver” datasets

• Precipitation
 - TRMM 3B42 satellite observations:
 • 0.25 deg
 • 3hr, averaged to daily
• River discharge
 - Modeled, WBMplus, daily, 6 minute spatial resolution
 - Forced by precipitation, not fully independent
 - Correlation of ~.5 with precipitation data
 - Delta river network not modeled, using watershed input at delta apex
• Waves
 - WAVEWATCH III model, 0.75 degree spatial resolution, CSIRO hindcast
 - 3hr, averaged to daily
 - Coastline not well resolved, single spatial mean value per day

Spatial harmonization

• Precipitation regridded by averaging rainfall over each EASE grid cell
Temporal Harmonization

- What is the “period of influence” of rainfall (discharge, waves) on surface inundation?
- Apply smoothing kernel to precipitation (discharge, waves) time series, calculate correlation with inundation
- Search for optimal smoothing kernel parameters
- Two kernels tested – Gaussian and Exponential Weighted Moving Average (EWMA)
- Roughly similar results, EWMA shown here, only one parameter, simpler interpretation

EWMA Smoothing

- 10 day inundation
- Daily precip/discharge/waves
Optimized correlations - Precip

- Optimal smoothing calculated for each pixel
- Timescale for EWMA span is on the order of 100 days
- Picking up the seasonal cycle? Can we do better than discovering its wet during the Monsoon season?

Seasonal influence - Mekong

- Decompose timeseries into climatological and anomalous components
- How much of these relationships is just seasonality?
Seasonality – Mekong, Precip

- Climatology – very similar to full timeseries, dominant signal
- Upland delta inundation most sensitive to precip
- Seasonal anomaly
- Weaker correlations overall, but northwest delta correlates better than other locations

Discharge, Wave correlations

- Discharge well correlated in upper Mekong, ~.8, similar to precip
- Waves weakly correlated on coast, negative upland, most likely due to anti-correlated seasonality components
Seasonality – Mekong, Discharge

- Climatology – very similar to full timeseries, dominant signal
- Upland delta inundation most sensitive to discharge, correlations ~.8
- Seasonal anomaly
- Weaker correlations in upper delta, ~.6, but similar pattern

Seasonality – Mekong, Waves

- Climatology – very similar to full timeseries, dominant signal
- Very localized regions of positive correlation, ~.5
- Seasonal anomaly
- Weaker correlations along coast, ~.3, but clear spatial pattern
Simple linear model

\[I_i = \beta_{1i} P_i + \beta_{2i} D_i + \beta_{3i} W_i + \epsilon_i \]

- Fit data for each pixel to separate model
- Can't really compare the coefficient terms B1 to B2 to B3 meaningfully - "apples to oranges"
- Rather, compare all B1_i's to each other, "apples to apples"

Linear coefficient spatial distributions

[Images of discharge, precip, and waves spatial distributions]
Linear coefficient spatial distributions
seasonal anomaly data

First two EOF/Principal Components

Waves

Linear model skill

- Model fit to 80% of dataset, tested on 20%
- Test set, two contiguous time slices to avoid smoothing bias
- Seasonal anomaly is noisier
- High inundation skill is better
Comparative delta work

- All datasets here are global
- Analysis can be applied to other deltas
 - 25km pixel size means only large deltas
 - Ganges Discharge and Waves, full timeseries, linear coefficients:

Modeling efforts

- Most numerical model river networks are derived from topographic flow directions grids
- Deltas are too flat for this method, and bifurcations are difficult

- IF this can be addressed, we can distribute discharge realistically through delta
- SSWAMPS as validation data
Summary

- Local precipitation and river discharge best correlate with Mekong surface inundation in the upstream delta, both on seasonal and shorter timescales.
- Waves/storms important on short timescales, within ~50km of coastline.
- Discharge and waves match well with first two EOFs, dominant sources of inundation variability.
- Simple linear model appears to have some skill, on short timescales performs better at high-inundation levels.
- Provides good observational basis for modeling efforts to separate out processes.

A shameless plug!

- Deltas-in-Practice Workshop Friday 9am
 - Science-to-Action: Aligning science with stakeholder and community needs in the Mekong and other delta systems.
 - (Not “just” Mekong - all welcome!)